PLoS ONE (Jan 2014)

Family-wide survey of miR169s and NF-YAs and their expression profiles response to abiotic stress in maize roots.

  • Mingda Luan,
  • Miaoyun Xu,
  • Yunming Lu,
  • Qiuxue Zhang,
  • Lan Zhang,
  • Chunyi Zhang,
  • Yunliu Fan,
  • Zhihong Lang,
  • Lei Wang

DOI
https://doi.org/10.1371/journal.pone.0091369
Journal volume & issue
Vol. 9, no. 3
p. e91369

Abstract

Read online

Previous studies have identified miR169/NF-YA modules are important regulators of plant development and stress responses. Currently, reported genome sequence data offers an opportunity for global characterization of miR169 and NF-YA genes, which may provide insights into the molecular mechanisms of the miR169/NF-YA modules in maize. In our study, fourteen NF-YA transcription factors with conserved domains were identified based on maize genome loci. The miR169 gene family has 18 members that generate 10 mature products, and 8 of these mature miR169 members could target 7 of 14 ZmNF-YA genes in maize. The seven ZmNF-YA proteins were localized to the nucleus while lacked transcriptional activity. We investigated the expression patterns of the zma-miR169 members and their targeted ZmNF-YA genes in maize roots treated by drought stress (polyethylene glycol, PEG), hormone stress (abscisic acid, ABA), and salt stress (NaCl). The zma-miR169 family members were downregulated in short term (0 ∼ 48 h) and generally upregulated over the long term (15 days) in response to the three abiotic stress conditions. Most of the targeted ZmNF-YA genes exhibited a reverse correlation with zma-miR169 gene expression over both the short term and long term. Maize root elongation was promoted by PEG and ABA but repressed by NaCl over the long term. Apparently, ZmNF-YA14 expression perfectly matched the zma-miR169 expression and corresponded to root growth reversely.