Journal of Applied Mathematics (Jan 2020)

A New Class of Halley’s Method with Third-Order Convergence for Solving Nonlinear Equations

  • Mohammed Barrada,
  • Mariya Ouaissa,
  • Yassine Rhazali,
  • Mariyam Ouaissa

DOI
https://doi.org/10.1155/2020/3561743
Journal volume & issue
Vol. 2020

Abstract

Read online

In this paper, we present a new family of methods for finding simple roots of nonlinear equations. The convergence analysis shows that the order of convergence of all these methods is three. The originality of this family lies in the fact that these sequences are defined by an explicit expression which depends on a parameter p where p is a nonnegative integer. A first study on the global convergence of these methods is performed. The power of this family is illustrated analytically by justifying that, under certain conditions, the method convergence’s speed increases with the parameter p. This family’s efficiency is tested on a number of numerical examples. It is observed that our new methods take less number of iterations than many other third-order methods. In comparison with the methods of the sixth and eighth order, the new ones behave similarly in the examples considered.