BMC Plant Biology (Jul 2024)

Haplotype-based association mapping of genomic regions associated with Zymoseptoria tritici resistance using 217 diverse wheat genotypes

  • Magdalena Radecka-Janusik,
  • Urszula Piechota,
  • Dominika Piaskowska,
  • Piotr Słowacki,
  • Sławomir Bartosiak,
  • Paweł Czembor

DOI
https://doi.org/10.1186/s12870-024-05400-1
Journal volume & issue
Vol. 24, no. 1
pp. 1 – 17

Abstract

Read online

Abstract Background Septoria tritici blotch (STB) is considered to be one of the most destructive foliar wheat diseases and is caused by Zymoseptoria tritici. The yield losses are severe and in Northwestern Europe can reach up to 50%. The efficacy of fungicides is diminishing due to changes in the genetic structure of the pathogen. Therefore, resistance breeding is the most effective strategy of disease management. Recently, genome-wide association studies (GWAS) have become more popular due to their robustness in dissecting complex traits, including STB resistance in wheat. This was made possible by the use of large mapping populations and new sequencing technologies. High-resolution mapping benefits from historical recombination and greater allele numbers in GWAS. Results In our study, 217 wheat genotypes of diverse origin were phenotyped against five Z. tritici isolates (IPO323, IPO88004, IPO92004, IPO86036 and St1-03) and genotyped on the DArTseq platform. In polytunnel tests two disease parameters were evaluated: the percentage of leaf area covered by necrotic lesions (NEC) and the percentage of leaf area covered by lesions bearing pycnidia (PYC). The disease escape parameters heading date (Hd) and plant height (Ht) were also measured. Pearson’s correlation showed a positive effect between disease parameters, providing additional information. The Structure analysis indicated four subpopulations which included from 28 (subpopulation 2) to 79 genotypes (subpopulation 3). All of the subpopulations showed a relatively high degree of admixture, which ranged from 60% of genotypes with less than 80% of proportions of the genome attributed to assigned subpopulation for group 2 to 85% for group 4. Haplotype-based GWAS analysis allowed us to identify 27 haploblocks (HBs) significantly associated with analysed traits with a p-value above the genome-wide significance threshold (5%, which was –log10(p) > 3.64) and spread across the wheat genome. The explained phenotypic variation of identified significant HBs ranged from 0.2% to 21.5%. The results of the analysis showed that four haplotypes (HTs) associated with disease parameters cause a reduction in the level of leaf coverage by necrosis and pycnidia, namely: Chr3A_HB98_HT2, Chr5B_HB47_HT1, Chr7B_HB36_HT1 and Chr5D_HB10_HT3. Conclusions GWAS analysis enabled us to identify four significant chromosomal regions associated with a reduction in STB disease parameters. The list of valuable HBs and wheat varieties possessing them provides promising material for further molecular analysis of resistance loci and development of breeding programmes.

Keywords