Open Mathematics (May 2021)

Existence and asymptotical behavior of solutions for a quasilinear Choquard equation with singularity

  • Shao Liuyang,
  • Wang Yingmin

DOI
https://doi.org/10.1515/math-2021-0025
Journal volume & issue
Vol. 19, no. 1
pp. 259 – 267

Abstract

Read online

In this study, we consider the following quasilinear Choquard equation with singularity −Δu+V(x)u−uΔu2+λ(Iα∗∣u∣p)∣u∣p−2u=K(x)u−γ,x∈RN,u>0,x∈RN,\left\{\begin{array}{ll}-\Delta u+V\left(x)u-u\Delta {u}^{2}+\lambda \left({I}_{\alpha }\ast | u{| }^{p})| u{| }^{p-2}u=K\left(x){u}^{-\gamma },\hspace{1.0em}& x\in {{\mathbb{R}}}^{N},\\ u\gt 0,\hspace{1.0em}& x\in {{\mathbb{R}}}^{N},\end{array}\right. where Iα{I}_{\alpha } is a Riesz potential, 00\lambda \gt 0. Under suitable assumption on VV and KK, we research the existence of positive solutions of the equations. Furthermore, we obtain the asymptotic behavior of solutions as λ→0\lambda \to 0.

Keywords