Fractal and Fractional (Jul 2024)
Derivation of Closed-Form Expressions in Apéry-like Series Using Fractional Calculus and Applications
Abstract
This paper explores the Apéry-like series and demonstrates the derivation of closed-form expressions using fractional calculus. We consider a variety of Apéry-like functions, which were categorized by their functional forms and coefficients by applying the Riemann–Liouville fractional integral and derivative to examine their properties across various domains. The study focuses on establishing rigorous mathematical frameworks that unveil new insights into the behaviors of these series, contributing to a deeper understanding of number theory and mathematical analysis. Key results include proofs of convergence and divergence within specified intervals and the derivation of closed-form solutions through fractional integration and differentiation. This paper also introduces a method aimed at conjecturing mathematical constants through continued fractions as an application of our results. Finally, we provide the proof of validation for three unproven conjectures of continued fractions obtained from the Ramanujan Machine.
Keywords