Metals (Aug 2018)

Oxidation Behavior of Non-Modified and Rhodium- or Palladium-Modified Aluminide Coatings Deposited on CMSX-4 Superalloy

  • Maryana Zagula-Yavorska

DOI
https://doi.org/10.3390/met8080613
Journal volume & issue
Vol. 8, no. 8
p. 613

Abstract

Read online

Rhodium-modified as well as palladium-modified and non-modified aluminide coatings on CMSX-4 Ni-based superalloy were oxidized in air atmosphere at 1100 °C. Uncoated substrate of CMSX-4 superalloy was also oxidized. The microstructure of coatings before oxidation consists of two layers: an additive and an interdiffusion one. The NiAl intermetallic phase was found in the microstructure of non-modified coatings, while the (Ni,Rh)Al intermetallic phase was observed in the microstructure of rhodium-modified aluminide coatings before oxidation. The (Ni,Pd)Al phase of palladium-modified aluminide coatings in the additive layer was observed before oxidation. The microstructure of the oxidized non-modified coatings consists of the γ’-Ni3Al phase. The oxide layer (10 µm thick) consists of the NiAl2O4 phase and porous Ni-rich oxide. The oxide layers (5 µm thick) formed on the surface of rhodium or palladium-modified coatings consist of the α-Al2O3 phase and the top layer of the NiAl2O4 phase. Al-depleted (30 at. %) β-NiAl grains besides the γ’-Ni3Al phase were found in the rhodium-modified coating, while only the γ’-Ni3Al phase region was revealed in the palladium-modified coating, Rhodium-modified coatings with small rhodium content (0.5 µm rhodium layer thick) can be an alternative for palladium-modified ones with bigger palladium content (3 µm thick palladium layer).

Keywords