Shock and Vibration (Jan 2020)

Vibration Power Flow of an Infinite Cylindrical Shell Submerged in Viscous Fluids

  • Haosen Chen,
  • Peng Yang,
  • Yijun Shen

DOI
https://doi.org/10.1155/2020/8828204
Journal volume & issue
Vol. 2020

Abstract

Read online

In the previous investigations of the vibroacoustic characteristics of a submerged cylindrical shell in a flow field, the fluid viscosity was usually ignored. In this paper, the effect of fluid viscosity on the characteristics of vibration power flow in an infinite circular cylindrical shell immersed in a viscous acoustic medium is studied. Flügge’s thin shell theory for an isotropic, elastic, and thin cylindrical shell is employed to obtain the motion equations of the structure under circumferential-distributed line force. Together with the wave equations for the viscous flow field as well as continuity conditions at the interface, the vibroacoustic equation of motion in the coupled system is derived. Numerical analysis based on the additional-damping numerical integral method and ten-point Gaussian integral method is conducted to solve the vibroacoustic coupling equation with varying levels of viscosity. Then, the variation of the input power flow against the nondimensional axial wave number in the coupled system with different circumferential mode numbers is discussed in detail. It is found that the influence of fluid viscosity on the vibroacoustic coupled system is mainly concentrated in the low-frequency band, which is shown as the increase of the crest number and amplitude of the input power flow curves.