International Journal of Mining Science and Technology (Jan 2024)

Heat transfer and temperature evolution in underground mining-induced overburden fracture and ground fissures: Optimal time window of UAV infrared monitoring

  • Yixin Zhao,
  • Kangning Zhang,
  • Bo Sun,
  • Chunwei Ling,
  • Jihong Guo

Journal volume & issue
Vol. 34, no. 1
pp. 31 – 50

Abstract

Read online

Heat transfer and temperature evolution in overburden fracture and ground fissures are one of the essential topics for the identification of ground fissures via unmanned aerial vehicle (UAV) infrared imager. In this study, discrete element software UDEC was employed to investigate the overburden fracture field under different mining conditions. Multiphysics software COMSOL were employed to investigate heat transfer and temperature evolution of overburden fracture and ground fissures under the influence of mining condition, fissure depth, fissure width, and month alternation. The UAV infrared field measurements also provided a calibration for numerical simulation. The results showed that for ground fissures connected to underground goaf (Fissure I), the temperature difference increased with larger mining height and shallow buried depth. In addition, Fissure I located in the boundary of the goaf have a greater temperature difference and is easier to be identified than fissures located above the mining goaf. For ground fissures having no connection to underground goaf (Fissure II), the heat transfer is affected by the internal resistance of the overlying strata fracture when the depth of Fissure II is greater than 10 m, the temperature of Fissure II gradually equals to the ground temperature as the fissures’ depth increases, and the fissures are difficult to be identified. The identification effect is most obvious for fissures larger than 16 cm under the same depth. In spring and summer, UAV infrared identification of mining fissures should be carried out during nighttime. This study provides the basis for the optimal time and season for the UAV infrared identification of different types of mining ground fissures.

Keywords