iScience (Nov 2022)

Predicting miRNA-disease association through combining miRNA function and network topological similarities based on MINE

  • Buwen Cao,
  • Renfa Li,
  • Sainan Xiao,
  • Shuguang Deng,
  • Xiangjun Zhou,
  • Lang Zhou

Journal volume & issue
Vol. 25, no. 11
p. 105299

Abstract

Read online

Summary: Predicting associations between microRNAs (miRNAs) and diseases from the viewpoint of function modules has become increasingly popular. However, existing methods obtained the relations between diseases and miRNAs only through the construction of similarity networks and neglected the complex network characteristic. In this paper, a new method named combining miRNA function similarities and network topology similarities based on module identification in networks (ComSim-MINE) was developed. Combined similarity is calculated from the harmonic mean between miRNA function similarities and network topology similarities. Experimental results showed that ComSim-MINE can compete with several state-of-the-art weighted function module algorithms, such as ClusterONE, MCODE, NEMO, and SPICi, and achieved the satisfactory results in terms of the composite score of F-measure, sensitivity, and accuracy based on the generated miRNA function interaction network. From the analysis of case studies, some new findings obtained from our proposed method provide clinicians new clues for epidemic diseases, such as COVID-19.

Keywords