Sensors (Oct 2009)

Classifying Human Leg Motions with Uniaxial Piezoelectric Gyroscopes

  • Kerem Altun,
  • Orkun Tunçel,
  • Billur Barshan

DOI
https://doi.org/10.3390/s91108508
Journal volume & issue
Vol. 9, no. 11
pp. 8508 – 8546

Abstract

Read online

This paper provides a comparative study on the different techniques of classifying human leg motions that are performed using two low-cost uniaxial piezoelectric gyroscopes worn on the leg. A number of feature sets, extracted from the raw inertial sensor data in different ways, are used in the classification process. The classification techniques implemented and compared in this study are: Bayesian decision making (BDM), a rule-based algorithm (RBA) or decision tree, least-squares method (LSM), k-nearest neighbor algorithm (k-NN), dynamic time warping (DTW), support vector machines (SVM), and artificial neural networks (ANN). A performance comparison of these classification techniques is provided in terms of their correct differentiation rates, confusion matrices, computational cost, and training and storage requirements. Three different cross-validation techniques are employed to validate the classifiers. The results indicate that BDM, in general, results in the highest correct classification rate with relatively small computational cost.

Keywords