Viruses (Aug 2024)

The <i>Feline calicivirus</i> Leader of the Capsid (LC) Protein Contains a Putative Transmembrane Domain, Binds to the Cytoplasmic Membrane, and Exogenously Permeates Cells

  • Yoatzin Peñaflor-Téllez,
  • Jesús Alejandro Escobar-Almazan,
  • Carolina Pérez-Ibáñez,
  • Carlos Emilio Miguel-Rodríguez,
  • Jaury Gómez de la Madrid,
  • Erick I. Monge-Celestino,
  • Patricia Talamás-Rohana,
  • Ana Lorena Gutiérrez-Escolano

DOI
https://doi.org/10.3390/v16081319
Journal volume & issue
Vol. 16, no. 8
p. 1319

Abstract

Read online

Feline calicivirus (FCV), an important model for studying the biology of the Caliciviridae family, encodes the leader of the capsid (LC) protein, a viral factor known to induce apoptosis when expressed in a virus-free system. Our research has shown that the FCV LC protein forms disulfide bond-dependent homo-oligomers and exhibits intrinsic toxicity; however, it lacked a polybasic region and a transmembrane domain (TMD); thus, it was initially classified as a non-classical viroporin. The unique nature of the FCV LC protein, with no similarity to other proteins beyond the Vesivirus genus, has posed challenges for bioinformatic analysis reliant on sequence similarity. In this study, we continued characterizing the LC protein using the AlphaFold 2 and the recently released AlphaFold 3 artificial intelligence tools to predict the LC protein tertiary structure. We compared it to other molecular modeling algorithms, such as I-Tasser’s QUARK, offering new insights into its putative TMD. Through exogenous interaction, we found that the recombinant LC protein associates with the CrFK plasmatic membrane and can permeate cell membranes in a disulfide bond-independent manner, suggesting that this interaction might occur through a TMD. Additionally, we examined its potential to activate the intrinsic apoptosis pathway in murine and human ovarian cancer cell lines, overexpressing survivin, an anti-apoptotic protein. All these results enhance our understanding of the LC protein’s mechanism of action and suggest its role as a class-I viroporin.

Keywords