Agronomy (Jan 2020)
Comparison and Application of Non-Destructive NIR Evaluations of Seed Protein and Oil Content in Soybean Breeding
Abstract
A plant breeding program needs to evaluate a large number of materials for different traits within a limited time. Near-infrared (NIR) spectroscopy has been used to quickly determine seed composition in various crop species. In this study, we compared whole-seed evaluations of protein and oil content by NIR methods in soybean [Glycine max (L.) Merr.], and then discussed the application to plant breeding. The differences among the entries tested were highly significant in both traits for each method used. No significant difference but high correlation and consistency existed between DA 7250 and wet-chemistry methods. Compared with DA 7250, ZX-50 exhibited, to some extent, differences or errors. The differences of ZX-50 methods were found to be correlated with seed sizes and could be corrected using regression equations formulated for bias calculation. After correction, the differences in the predictions between DA 7250 and ZX-50 methods were insignificant. Similar to DA 7250, ZX-50 methods exhibited a high repeatability (> 98%) of the predictions. By validation with 760 bulk samples of different seed types and 240 single-plant samples, it further demonstrated that as a non-destructive, fast and cost-efficient method, ZX-50 NIR analysis with an appropriate bias correction could be used in soybean breeding, specifically suitable for single plant selection based on whole seeds.
Keywords