Revista EIA ()
HACIA EL AGARRE DE OBJETOS UTILIZANDO APRENDIZAJE ROBÓTICO POR IMITACIÓN Y DATOS DE FUERZA
Abstract
En este artículo se trata el agarre de objetos en robótica. Específicamente, agarres de precisión y la fuerza requerida en los puntos de contacto entre la mano y el objeto para realizar una buena sujeción. Se propone adquirir los datos de sensores de fuerza utilizando un guante de datos y codificándolos mediante aprendizaje por imitación. Se utilizan imágenes RGB y de profundidad para determinar la ubicación y orientación de los objetos. Se prueban varias configuraciones mano-objeto en simulación, comparando la calidad del agarre al utilizar las fuerzas máximas, mínimas y promedio truncado. La variación de la calidad obtenida es pequeña y en algunos casos despreciable, permitiendo concluir que al seleccionar siempre las fuerzas máximas, se obtiene un agarre que se ajusta bien a múltiples configuraciones. Además, se presenta un sistema de adquisición de datos de fuerza de bajo costo y una etapa de procesamiento de imágenes que permite determinar la ubicación y orientación de los objetos.