Thermal Effect on the Bioconvection Dynamics of Gravitactic Microorganisms in a Rectangular Cavity
Rubén Mil-Martínez,
René O. Vargas,
Juan P. Escandón,
Ildebrando Pérez-Reyes,
Marcos Turcio,
Aldo Gómez-López,
Francisco López-Serrano
Affiliations
Rubén Mil-Martínez
Escuela Militar de Ingenieros, Universidad del Ejército y Fuerza Aérea, Av. Industria Militar No. 261, Col. Lomas de San Isidro, Naucalpan de Juárez 53960, Estado de México, Mexico
René O. Vargas
Departamento de Termofluidos, SEPI-ESIME Unidad Azcapotzalco, Instituto Politécnico Nacional, Av. de las Granjas No. 682, Col. Santa Catarina, Alcaldía Azcapotzalco 02250, Ciudad de México, Mexico
Juan P. Escandón
Departamento de Termofluidos, SEPI-ESIME Unidad Azcapotzalco, Instituto Politécnico Nacional, Av. de las Granjas No. 682, Col. Santa Catarina, Alcaldía Azcapotzalco 02250, Ciudad de México, Mexico
Ildebrando Pérez-Reyes
Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario s/n, Chihuahua 31125, Chihuahua, Mexico
Marcos Turcio
Departamento de Ciencias Básicas, Tecnológico Nacional de México Campus Querétaro, Av. Tecnológico s/n, Centro, Santiago de Querétaro 76000, Querétaro, Mexico
Aldo Gómez-López
Departamento de Ingeniería, Sección Mecánica, FES Cuautitlán, Universidad Nacional Autónoma de México, Av. Teoloyucan Km 2.5, Col. San Sebastián Xhala, Cuautitlán Izcalli 54714, Estado de México, Mexico
Francisco López-Serrano
Departamento de Ingeniería Química, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Ciudad de México, Mexico
In this work, the dynamics of the bioconvection process of gravitactic microorganisms enclosed in a rectangular cavity, is analyzed. The dimensionless cell and energy conservation equations are coupled with the vorticity-stream function formulation. Then, the effects of the bioconvection Rayleigh number and the heating source on the dynamics of microorganisms are discussed. The results based in streamlines, concentration and temperature contours are obtained through numerical simulations considering eight different configurations of symmetrical and asymmetrical heat sources. It is concluded that microorganisms accumulate in the warmer regions and swim through the cooler regions to reach the surface. They form cells for each heat source, but at high concentrations, they form a single stable cell. The results presented here can be applied to control and to understand the dynamics of microorganisms with discrete heat sources.