BioTechniques (Sep 2013)

High-throughput quantification of early stages of phagocytosis

  • Jeremy Changyu Yeo,
  • Adam Alexander Wall,
  • Jennifer Lea Stow,
  • Nicholas Ahti Hamilton

DOI
https://doi.org/10.2144/000114075
Journal volume & issue
Vol. 55, no. 3
pp. 115 – 124

Abstract

Read online

Phagocytosis—the engulfment of cells and foreign bodies—is an important cellular process in innate immunity, development, and disease. Quantification of various stages of phagocytosis, especially in a rapid screening fashion, is an invaluable tool for elucidating protein function during this process. However, current methods for assessing phagocytosis are largely limited to flow cytometry and manual image-based assays, providing limited information. Here, we present an image-based, semi-automated phagocytosis assay to rapidly quantitate three distinct stages during the early engulfment of opsonized beads. Captured images are analyzed using the image-processing software ImageJ and quantified using a macro. Modifications to this method allowed quantification of phagocytosis only in fluorescently labeled transfected cells. Additionally, the time course of bead internalization could be measured using this approach. The assay could discriminate perturbations to stages of phagocytosis induced by known pharmacological inhibitors of filamentous actin and phosphoinositol-3-kinase. Our methodology offers the ability to automatically categorize large amounts of image data into the three early stages of phagocytosis within minutes, clearly demonstrating its potential value in investigating aberrant phagocytosis when manipulating proteins of interest in drug screens and disease.

Keywords