PLoS ONE (Jan 2017)

Prospects and limitations of improving skeletal growth in a mouse model of spondyloepiphyseal dysplasia caused by R992C (p.R1192C) substitution in collagen II.

  • Machiko Arita,
  • Jolanta Fertala,
  • Cheryl Hou,
  • James Kostas,
  • Andrzej Steplewski,
  • Andrzej Fertala

DOI
https://doi.org/10.1371/journal.pone.0172068
Journal volume & issue
Vol. 12, no. 2
p. e0172068

Abstract

Read online

Skeletal dysplasias form a group of skeletal disorders caused by mutations in macromolecules of cartilage and bone. The severity of skeletal dysplasias ranges from precocious arthropathy to perinatal lethality. Although the pathomechanisms of these disorders are generally well defined, the feasibility of repairing established aberrant skeletal tissues that developed in the presence of mutant molecules is currently unknown. Here, we employed a validated mouse model of spondyloepiphyseal dysplasia (SED) that enables temporal control of the production of the R992C (p.R1192C) collagen II mutant that causes this disease. Although in our earlier studies we determined that blocking the expression of this mutant at the early prenatal stages prevents a SED phenotype, the utility of blocking the R992C collagen II at the postnatal stages is not known. Here, by switching off the expression of R992C collagen II at various postnatal stages of skeletal development, we determined that significant improvements of cartilage and bone morphology were achieved only when blocking the production of the mutant molecules was initiated in newborn mice. Our study indicates that future therapies of skeletal dysplasias may require defining a specific time window when interventions should be applied to be successful.