Intragastric Carbon Dioxide Release Prolongs the Gastric Residence Time of Postprandially Administered Caffeine
Stefan Senekowitsch,
Constantin Foja,
Toni Wildgrube,
Philipp Schick,
Christoph Rosenbaum,
Julius Krause,
Friederike Brokmann,
Marie-Luise Kromrey,
Stefan Engeli,
Werner Weitschies,
Michael Grimm
Affiliations
Stefan Senekowitsch
Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport (C_DAT), University of Greifswald, Felix-Hausdorff-Str. 3, 17487 Greifswald, Germany
Constantin Foja
Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport (C_DAT), University of Greifswald, Felix-Hausdorff-Str. 3, 17487 Greifswald, Germany
Toni Wildgrube
Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport (C_DAT), University of Greifswald, Felix-Hausdorff-Str. 3, 17487 Greifswald, Germany
Philipp Schick
Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport (C_DAT), University of Greifswald, Felix-Hausdorff-Str. 3, 17487 Greifswald, Germany
Christoph Rosenbaum
Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport (C_DAT), University of Greifswald, Felix-Hausdorff-Str. 3, 17487 Greifswald, Germany
Julius Krause
Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport (C_DAT), University of Greifswald, Felix-Hausdorff-Str. 3, 17487 Greifswald, Germany
Friederike Brokmann
Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport (C_DAT), University of Greifswald, Felix-Hausdorff-Str. 3, 17487 Greifswald, Germany
Marie-Luise Kromrey
Department of Diagnostic Radiology and Neuroradiology, University Hospital Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
Stefan Engeli
Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Felix-Hausdorff-Str. 3, 17487 Greifswald, Germany
Werner Weitschies
Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport (C_DAT), University of Greifswald, Felix-Hausdorff-Str. 3, 17487 Greifswald, Germany
Michael Grimm
Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport (C_DAT), University of Greifswald, Felix-Hausdorff-Str. 3, 17487 Greifswald, Germany
Sparkling water is said to increase gastric motility by the release of carbon dioxide, thereby potentially affecting the pharmacokinetics of orally administered drugs. The hypothesis of the present work was that the induction of gastric motility by intragastric release of carbon dioxide from effervescent granules could promote the mixing of drugs into the chyme under postprandial conditions, resulting in a prolonged drug absorption. For this purpose, an effervescent and a non-effervescent granule formulation of caffeine as a marker for gastric emptying were developed. In a three-way crossover study with twelve healthy volunteers, the salivary caffeine pharmacokinetics, after administration of the effervescent granules with still water and the administration of the non-effervescent granules with still and sparkling water, were investigated after intake of a standard meal. While the administration of the effervescent granules with 240 mL of still water led to a significantly prolonged gastric residence of the substance compared to the administration of the non-effervescent granules with 240 mL still water, the application of the non-effervescent granules with 240 mL sparkling water did not prolong gastric residence via mixing into caloric chyme. Overall, the mixing of caffeine into the chyme following the administration of the effervescent granules did not seem to be a motility mediated process.