The Astrophysical Journal (Jan 2024)

Extrapolation of Type Ia Supernova Spectra into the Near-infrared Using Principal Component Analysis

  • Anthony Burrow,
  • E. Baron,
  • Christopher R. Burns,
  • Eric Y. Hsiao,
  • Jing Lu,
  • Chris Ashall,
  • Peter J. Brown,
  • James M. DerKacy,
  • G. Folatelli,
  • Lluís Galbany,
  • P. Hoeflich,
  • Kevin Krisciunas,
  • N. Morrell,
  • M. M. Phillips,
  • Benjamin J. Shappee,
  • Maximilian D. Stritzinger,
  • Nicholas B. Suntzeff

DOI
https://doi.org/10.3847/1538-4357/ad3c45
Journal volume & issue
Vol. 967, no. 1
p. 55

Abstract

Read online

We present a method of extrapolating the spectroscopic behavior of Type Ia supernovae (SNe Ia) in the near-infrared (NIR) wavelength regime up to 2.30 μ m using optical spectroscopy. Such a process is useful for accurately estimating K-corrections and other photometric quantities of SNe Ia in the NIR. A principal component analysis is performed on data consisting of Carnegie Supernova Project I & II optical and NIR FIRE spectra to produce models capable of making these extrapolations. This method differs from previous spectral template methods by not parameterizing models strictly by photometric light-curve properties of SNe Ia, allowing for more flexibility of the resulting extrapolated NIR flux. A difference of around −3.1% to −2.7% in the total integrated NIR flux between these extrapolations and the observations is seen here for most test cases including Branch core-normal and shallow-silicon subtypes. However, larger deviations from the observation are found for other tests, likely due to the limited high-velocity and broad-line SNe Ia in the training sample. Maximum-light principal components are shown to allow for spectroscopic predictions of the color-stretch light-curve parameter, s _BV , within approximately ±0.1 units of the value measured with photometry. We also show these results compare well with NIR templates, although in most cases the templates are marginally more fitting to observations, illustrating a need for more concurrent optical+NIR spectroscopic observations to truly understand the diversity of SNe Ia in the NIR.

Keywords