Functional Composite Materials (Jun 2024)

Nano-modifications of edible materials using ionizing radiation for potential application in active food safety

  • Maysara E. Aboulfotouh,
  • Hussein El-shahat Ali,
  • Maha R. Mohamed

DOI
https://doi.org/10.1186/s42252-024-00056-4
Journal volume & issue
Vol. 5, no. 1
pp. 1 – 14

Abstract

Read online

Abstract Active food packaging films from Carboxy methyl cellulose and starch (CMC-g-Starch) reinforced with Magnesium-oxide (MgO) NPs are created and characterized. The effect of different particle sizes, MgO NPs concentrations and different gamma irradiation doses on the preparation of (CMC-g-Starch-MgO) edible nanocomposite films were investigated to determine their properties. Several analytical methods, such as swelling behavior, FT-IR, TEM, TGA, and mechanical characteristics, are represented to investigate different characteristics of the prepared (CMC-g-Starch-MgO) edible nanocomposite films. Also, the prepared (CMC-g-Starch-MgO) edible nanocomposite films and their coating were subjected to the fresh Peaches fruits. Their effect on the Peach fruits' lifespan was evaluated. The anti-microbial property of the edible (CMC-g-Starch-MgO) nanocomposite films of gram (+ve) and gram (–ve) bacteria was reported. Results represented the thermal and mechanical characteristics of (CMC-g-Starch-MgO) edible nanocomposite films, which were enhanced by γ irradiation. Also, the irradiated (CMC-g-Starch-MgO) edible nanocomposite films and their coating extend the lifespan of Peaches fruits and exhibit resistance to pathogenic microorganisms. In conclusion, (CMC-g-Starch-MgO) edible nanocomposite films fulfilled the required behaviors for the application in the nanofood packaging era.

Keywords