Data in Brief (Apr 2019)

Spectroscopy data for the time and frequency characterization of vibrational coherences in bacteriochlorophyll a

  • Elena Meneghin,
  • Danilo Pedron,
  • Elisabetta Collini

Journal volume & issue
Vol. 23

Abstract

Read online

Bacteriochlorophyll is the primary pigment in the light-harvesting pigment-protein complexes (PPCs) of the bacterial photosynthetic apparatus. 2D electronic spectroscopy (2DES) represents one of the most exploited and powerful techniques to characterize the ultrafast relaxation dynamics in PPCs, in particular, to assess the presence of coherent mechanisms during energy transport.The data reported in this work and the associated research article, “Characterization of the coherent dynamics of bacteriochlorophyll a in solution” [Meneghin et al., 2019] are an important contribution to the literature on coherent dynamics of light-harvesting complexes and can be useful in the interpretation of coherent motion in more complex systems with bacteriochlorophyll a (BChla) as a basic unit. The analysis of the provided data allows the identification of vibrational coherences associated with several Franck-Condon active modes and the characterization of their frequencies and dephasing times.Here we report additional data analysis and additional measures that complement the associated research article [Meneghin et al., 2019] and support its main conclusions. In particular, we compare vibrational coherences extracted from 2DES response with Raman modes detected for BChla powders at cryogenic temperature in resonant and non-resonant conditions. Finally, we show the time-resolved fluorescence decay of the chromophore to support the interpretation of non-coherent dynamics discussed in Ref. [Meneghin et al., 2019].