Current Research in Biotechnology (Jan 2024)
Exploring metal and metal-oxide nanoparticles for nanosensing and biotic stress management in plant systems
Abstract
Nanotechnology offers promising solutions for climate-resilient agriculture, countering challenges like stagnant yields, emerging pests, and environmental stresses posed by changing global climates. Nanoparticles (NPs) possess unique properties and biological interactions. Metal-based NPs have been tailored for functions like antimicrobial activity, insecticidal properties, and weed inhibition and hold promise for combating biotic stresses and offer the potential for plant pest control, disease detection and management, stress resilience, weed control, and enhancing biomass and crop yield. Metallic NPs repel pests, exhibit larvicidal and ovicidal properties, combat plant pathogens, deliver agrochemicals precisely, and prevent weed growth, eventually boosting agricultural productivity. Numerous NP-based metal and metal oxide nanoproducts, including nanocarriers for nanofertilizers and nanopesticides, nanobiosensors for early pathogen detection, and nanoclays for weed control have flooded the market. Though, mechanistic details of NPs action in mitigating biotic stresses are poorly accounted for, metallic NPs combat pathogens by incurring DNA damage and generating reactive oxygen species (ROS). They fortify plant defense by activation of regulatory factors, induction of antioxidant systems, activation of stress-related genes, and modulation of the metabolic pathways to enhance plant growth. Nevertheless, nanotechnology in agriculture is in its infancy yet, necessitating further research to comprehend its merits and demerits. The potential toxicological effects of NPs underscore the importance of optimizing their dosage to maximize benefits while minimizing negative impacts. Further, redressal of regulatory and safety concerns associated with NPs application in agriculture is essential to ensure their safe and sustainable usage. Clear universal guidelines and standardized testing protocols need to be mandated to uphold their global implementation to transform agriculture.