Materials (Sep 2021)

Effect of Temperature on Electrochemically Assisted Deposition and Bioactivity of CaP Coatings on CpTi Grade 4

  • Bożena Łosiewicz,
  • Patrycja Osak,
  • Joanna Maszybrocka,
  • Julian Kubisztal,
  • Sylwia Bogunia,
  • Patryk Ratajczak,
  • Krzysztof Aniołek

DOI
https://doi.org/10.3390/ma14175081
Journal volume & issue
Vol. 14, no. 5081
p. 5081

Abstract

Read online

Calcium phosphate (CaP) coatings are able to improve the osseointegration process due to their chemical composition similar to that of bone tissues. Among the methods of producing CaP coatings, the electrochemically assisted deposition (ECAD) is particularly important due to high repeatability and the possibility of deposition at room temperature and neutral pH, which allows for the co-deposition of inorganic and organic components. In this work, the ECAD of CaP coatings from an acetate bath with a Ca:P ratio of 1.67, was developed. The effect of the ECAD conditions on CaP coatings deposited on commercially pure titanium grade 4 (CpTi G4) subjected to sandblasting and autoclaving was presented. The physicochemical characteristics of the ECAD-derived coatings was carried out using SEM, EDS, FTIR, 2D roughness profiles, and amplitude sensitive eddy current method. It was showed that amorphous calcium phosphate (ACP) coatings can be obtained at a potential −1.5 to −10 V for 10 to 60 min at 20 to 70 °C. The thickness and surface roughness of the ACP coatings were an increasing function of potential, time, and temperature. The obtained ACP coatings are a precursor in the process of apatite formation in a simulated body fluid. The optimal ACP coating for use in dentistry was deposited at a potential of −3 V for 30 min at 20 °C.

Keywords