Biomedical and Biotechnology Research Journal (Jan 2022)

Inhibitory effect of Basella alba-Mediated zinc oxide nanoparticles against the infection-causing bacteria

  • Aranganathan Agila,
  • Gnanasekar Dayana Jeyaleela,
  • Joseph Devaraj Rosaline Vimala,
  • Moses Stella Bharathy,
  • Sagaya Adaikalaraj Margrat Sheela

DOI
https://doi.org/10.4103/bbrj.bbrj_144_22
Journal volume & issue
Vol. 6, no. 3
pp. 353 – 359

Abstract

Read online

Background: Naturally occurring biomolecules from the plant extract have been identified to play an active role in the formation of any nanoparticles. Methods: This work aimed to synthesize the nano-sized zinc oxide material (zinc oxide nanoparticles [ZnONPs]) using the 70% ethanolic leaf extract of Basella alba by precipitation method and also studied the antibacterial activity of green-synthesized ZnONPs on infection-causing five bacteria. Synthesized nanomaterials were characterized by the aid of ultraviolet (UV)-visible, Fourier transform infrared spectroscopy, scanning electron microscope, X-ray diffraction, and Energy Dispersive X-ray Analysis (EDAX). Results: Qualitative analysis and UV results of extract reveal the occurrence of some medicinally important phytomolecules such as flavonoids, terpenoids, phenolic acids, and ascorbic acid. The spherical nature of ZnONPs was observed with an average crystalline size of 28.64 nm. EDAX analysis revealed the elemental compositions in the B. alba-mediated ZnONPs (BA-ZnONPs) which showed zinc in 70.04% and oxygen in 29.96%. BA-ZnONPs were tested against the bacteria (an infection causing) such as Pseudomonas aeruginosa, Escherichia coli, Enterobacter aerogenes, Staphylococcus aureus, and Proteus vulgaris, which results that, against all the pathogens, ZnONPs showed noticeable inhibition effects compared with zinc acetate and B. alba extract. Especially against the E. coli, ZnONPs performed well with inhibitory effect and least on S. aureus. Conclusion: Antibacterial activities of BA-ZnONPs were studied which can act as the new antimicrobial-resistant agents.

Keywords