Scientific Reports (Dec 2021)

Behavior of magnetoelectric hysteresis and role of rare earth ions in multiferroicity in double perovskite Yb2CoMnO6

  • Jong Hyuk Kim,
  • Ki Won Jeong,
  • Dong Gun Oh,
  • Hyun Jun Shin,
  • Jae Min Hong,
  • Jin Seok Kim,
  • Jae Young Moon,
  • Nara Lee,
  • Young Jai Choi

DOI
https://doi.org/10.1038/s41598-021-03330-8
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Double-perovskite multiferroics have been investigated because alternating orders of magnetic ions act as distinct magnetic origins for ferroelectricity. In Yb2CoMnO6, the frustrated antiferromagnetic order emerging at T N = 52 K induces ferroelectric polarization perpendicular to the c axis through cooperative O2− shifts via the symmetric exchange striction. In our detailed measurements of the magnetoelectric properties of single-crystalline Yb2CoMnO6, we observe full ferromagnetic-like hysteresis loops that are strongly coupled to the dielectric constant and ferroelectric polarization at various temperatures below T N. Unlike Lu2CoMnO6 with non-magnetic Lu3+ ions, we suggest the emergence of additional ferroelectric polarization along the c axis below the ordering temperature of magnetic Yb3+ ions, T Yb ≈ 20 K, based on the spin structure established from recent neutron diffraction experiments. While the proposed description for additional ferroelectricity, ascribed to the symmetric exchange striction between Yb3+ and Co2+/Mn4+ magnetic moments, is clearly given, anomalies of dielectric constants along the c axis are solely observed. Our interesting findings on magnetoelectric hysteresis and the possible development of additional ferroelectricity reveal notable characteristics of double perovskites and provide essential guidance for the further examination of magnetoelectric functional properties.