Design and Assembly of a Biofactory for (2<i>S</i>)-Naringenin Production in <i>Escherichia coli</i>: Effects of Oxygen Transfer on Yield and Gene Expression
Laura E. Parra Daza,
Lina Suarez Medina,
Albert E. Tafur Rangel,
Miguel Fernández-Niño,
Luis Alberto Mejía-Manzano,
José González-Valdez,
Luis H. Reyes,
Andrés Fernando González Barrios
Affiliations
Laura E. Parra Daza
Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá 110311, Colombia
Lina Suarez Medina
Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá 110311, Colombia
Albert E. Tafur Rangel
Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá 110311, Colombia
Miguel Fernández-Niño
Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá 110311, Colombia
Luis Alberto Mejía-Manzano
Tecnológico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, NL, Mexico
José González-Valdez
Tecnológico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, NL, Mexico
Luis H. Reyes
Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá 110311, Colombia
Andrés Fernando González Barrios
Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá 110311, Colombia
The molecule (2S)-naringenin is a scaffold molecule with several nutraceutical properties. Currently, (2S)-naringenin is obtained through chemical synthesis and plant isolation. However, these methods have several drawbacks. Thus, heterologous biosynthesis has emerged as a viable alternative to its production. Recently, (2S)-naringenin production studies in Escherichia coli have used different tools to increase its yield up to 588 mg/L. In this study, we designed and assembled a bio-factory for (2S)-naringenin production. Firstly, we used several parametrized algorithms to identify the shortest pathway for producing (2S)-naringenin in E. coli, selecting the genes phenylalanine ammonia lipase (pal), 4-coumarate: CoA ligase (4cl), chalcone synthase (chs), and chalcone isomerase (chi) for the biosynthetic pathway. Then, we evaluated the effect of oxygen transfer on the production of (2S)-naringenin at flask (50 mL) and bench (4 L culture) scales. At the flask scale, the agitation rate varied between 50 rpm and 250 rpm. At the bench scale, the dissolved oxygen was kept constant at 5% DO (dissolved oxygen) and 40% DO, obtaining the highest (2S)-naringenin titer (3.11 ± 0.14 g/L). Using genome-scale modeling, gene expression analysis (RT-qPCR) of oxygen-sensitive genes was obtained.