Frontiers in Microbiology (Aug 2024)

Genome and pan-genome analysis of a new exopolysaccharide-producing bacterium Pyschrobacillus sp. isolated from iron ores deposit and insights into iron uptake

  • Afef Najjari,
  • Marwa Jabberi,
  • Marwa Jabberi,
  • Marwa Jabberi,
  • Saïda Fatma Chérif,
  • Saïda Fatma Chérif,
  • Ameur Cherif,
  • Hadda Imene Ouzari,
  • Javier A. Linares-Pastén,
  • Haitham Sghaier,
  • Haitham Sghaier

DOI
https://doi.org/10.3389/fmicb.2024.1440081
Journal volume & issue
Vol. 15

Abstract

Read online

Bacterial exopolysaccharides (EPS) have emerged as one of the key players in the field of heavy metal-contaminated environmental bioremediation. This study aimed to characterize and evaluate the metal biosorption potential of EPS produced by a novel Psychrobacillus strain, NEAU-3TGS, isolated from an iron ore deposit at Tamra iron mine, northern Tunisia. Genomic and pan-genomic analysis of NEAU-3TGS bacterium with nine validated published Psychrobacillus species was also performed. The results showed that the NEAU-3TGS genome (4.48 Mb) had a mean GC content of 36%, 4,243 coding sequences and 14 RNA genes. Phylogenomic analysis and calculation of nucleotide identity (ANI) values (less than 95% for new species with all strains) confirmed that NEAU-3TGS represents a potential new species. Pangenomic analysis revealed that Psychrobacillus genomic diversity represents an “open” pangenome model with 33,091 homologous genes, including 65 core, 3,738 shell, and 29,288 cloud genes. Structural EPS characterization by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy showed uronic acid and α-1,4-glycosidic bonds as dominant components of the EPS. X-ray diffraction (XRD) analysis revealed the presence of chitin, chitosan, and calcite CaCO3 and confirmed the amorphous nature of the EPS. Heavy metal bioabsorption assessment showed that iron and lead were more adsorbed than copper and cadmium. Notably, the optimum activity was observed at 37°C, pH=7 and after 3 h contact of EPS with each metal. Genomic insights on iron acquisition and metabolism in Psychrobacillus sp. NEAU-3TGS suggested that no genes involved in siderophore biosynthesis were found, and only the gene cluster FeuABCD and trilactone hydrolase genes involved in the uptake of siderophores, iron transporter and exporter are present. Molecular modelling and docking of FeuA (protein peptidoglycan siderophore-binding protein) and siderophores ferrienterobactine [Fe+3 (ENT)]-3 and ferribacillibactine [Fe+3 (BB)]-3 ligand revealed that [Fe+3 (ENT)]-3 binds to Phe122, Lys127, Ile100, Gln314, Arg215, Arg217, and Gln252. Almost the same for [Fe+3 (ENT)]-3 in addition to Cys222 and Tyr229, but not Ile100.To the best of our knowledge, this is the first report on the characterization of EPS and the adsorption of heavy metals by Psychrobacillus species. The heavy metal removal capabilities may be advantageous for using these organisms in metal remediation.

Keywords