EPJ Web of Conferences (Jan 2020)

The Interaction of Neutrons with 7Be at BBN Temperatures: Lack of Standard Nuclear Solution to the “Primordial 7Li Problem”

  • Gai M.,
  • Kading E.E.,
  • Hass M.,
  • Nollett K.M.,
  • Stern S.R.,
  • Stora Th.,
  • Weiss A.

DOI
https://doi.org/10.1051/epjconf/202022701007
Journal volume & issue
Vol. 227
p. 01007

Abstract

Read online

We report the first measurement of alpha-particles from the interaction of neutrons with 7Be at “temperatures” of Big Bang Nucleosynthesis (BBN). We measured the Maxwellian averaged cross sections (MACS), with neutron beams produced by the LiLiT at the SARAF in Israel (with kT = 49.5 keV hence 0.57 GK). In addition, we measured the cross section of the 7Be(n,p) reaction, which is in excellent agreement with the recent measurement of the n_TOF collaboration, further substantiating our method as a demonstration of “proof of principle”. The cross section for the 7Be(n,ga) and the 7Be(n,a) reaction measured in the “BBN window” is considerably smaller than compiled by Wagoner in 1969 and used today in Big Bang Nucleosynthesis (BBN). We also rule out a hitherto unknown resonance in 8Be at the BBN window, that was conjectured as a possible standard nuclear physics solution to the “Primordial 7Li Problem”. Together with previous results, we deduce a new Wagoner-like Rate for the destruction of 7Be by neutrons which is based on all current measured data. We conclude the lack of a standard nuclear solution to the “Primordial 7Li Problem”. Our upper limit on the cross sections for the high energy alpha-particles is in agreement with recent measurement of the n_TOF collaboration, but it is considerably smaller than the p-wave extrapolation of the Kyoto collaboration. We measured the alpha-particles from the 7Be(n,gi)8Be*(3.03 MeV) reaction, which is considerably larger than a previous s-wave estimate. Hence, in contrast, we conclude s-wave dominance at BBN energies, as would be expected due to the broad (122 keV) low lying 2” state at En = 10 keV.