EPJ Web of Conferences (Jan 2017)
Discharge of repulsive grains from a silo: experiments and simulations
Abstract
In granular matter, sliding friction and collisions among grains are fundamental mechanisms of energy dissipation that determine the particles dynamics. Here we consider an unconventional granular system composed of magnetic repelling grains confined in a two dimensional cell that interact only through their magnetic field. The repulsive interaction prevents contact among grains and therefore produces a different dynamics compared to the dynamics of classical granular systems. In particular, we present experiments and simulations on the discharge of this repulsive granular medium from a silo. The results reveal an inverted density profile and a plug-flow through the aperture that contrast with the dynamics displayed by contacting grains. Moreover, the simulations allow to estimate the friction coefficient generated by the lateral confinement.