Applied Sciences (Dec 2021)
Achieving Semantic Consistency for Multilingual Sentence Representation Using an Explainable Machine Natural Language <i>Parser</i> (<i>MParser</i>)
Abstract
In multilingual semantic representation, the interaction between humans and computers faces the challenge of understanding meaning or semantics, which causes ambiguity and inconsistency in heterogeneous information. This paper proposes a Machine Natural Language Parser (MParser) to address the semantic interoperability problem between users and computers. By leveraging a semantic input method for sharing common atomic concepts, MParser represents any simple English sentence as a bag of unique and universal concepts via case grammar of an explainable machine natural language. In addition, it provides a human and computer-readable and -understandable interaction concept to resolve the semantic shift problems and guarantees consistent information understanding among heterogeneous sentence-level contexts. To evaluate the annotator agreement of MParser outputs that generates a list of English sentences under a common multilingual word sense, three expert participants manually and semantically annotated 75 sentences (505 words in total) in English. In addition, 154 non-expert participants evaluated the sentences’ semantic expressiveness. The evaluation results demonstrate that the proposed MParser shows higher compatibility with human intuitions.
Keywords