Biased Signaling of the Mu Opioid Receptor Revealed in Native Neurons
Aliza T. Ehrlich,
Meriem Semache,
Florence Gross,
Dillon F. Da Fonte,
Leonie Runtz,
Christine Colley,
Amina Mezni,
Christian Le Gouill,
Viktoriya Lukasheva,
Mireille Hogue,
Emmanuel Darcq,
Michel Bouvier,
Brigitte L. Kieffer
Affiliations
Aliza T. Ehrlich
Department of Psychiatry, McGill University, Douglas Hospital Research Center, Perry Pavilion Room E-3317.1, 6875 Boulevard LaSalle, Montréal, QC H4H 1R3, Canada; Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch-Graffenstaden, France
Meriem Semache
Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, Unité de Recherche en Pharmacologie Moléculaire, Université de Montréal, Pavillon Marcelle-Coutu Bureau 1306-3, Montréal, QC H3T 1J4, Canada
Florence Gross
Department of Psychiatry, McGill University, Douglas Hospital Research Center, Perry Pavilion Room E-3317.1, 6875 Boulevard LaSalle, Montréal, QC H4H 1R3, Canada; Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, Unité de Recherche en Pharmacologie Moléculaire, Université de Montréal, Pavillon Marcelle-Coutu Bureau 1306-3, Montréal, QC H3T 1J4, Canada
Dillon F. Da Fonte
Department of Psychiatry, McGill University, Douglas Hospital Research Center, Perry Pavilion Room E-3317.1, 6875 Boulevard LaSalle, Montréal, QC H4H 1R3, Canada
Leonie Runtz
Department of Psychiatry, McGill University, Douglas Hospital Research Center, Perry Pavilion Room E-3317.1, 6875 Boulevard LaSalle, Montréal, QC H4H 1R3, Canada
Christine Colley
Department of Psychiatry, McGill University, Douglas Hospital Research Center, Perry Pavilion Room E-3317.1, 6875 Boulevard LaSalle, Montréal, QC H4H 1R3, Canada; Department of Biochemical Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
Amina Mezni
Department of Psychiatry, McGill University, Douglas Hospital Research Center, Perry Pavilion Room E-3317.1, 6875 Boulevard LaSalle, Montréal, QC H4H 1R3, Canada; Department of Biochemical Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
Christian Le Gouill
Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, Unité de Recherche en Pharmacologie Moléculaire, Université de Montréal, Pavillon Marcelle-Coutu Bureau 1306-3, Montréal, QC H3T 1J4, Canada
Viktoriya Lukasheva
Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, Unité de Recherche en Pharmacologie Moléculaire, Université de Montréal, Pavillon Marcelle-Coutu Bureau 1306-3, Montréal, QC H3T 1J4, Canada
Mireille Hogue
Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, Unité de Recherche en Pharmacologie Moléculaire, Université de Montréal, Pavillon Marcelle-Coutu Bureau 1306-3, Montréal, QC H3T 1J4, Canada
Emmanuel Darcq
Department of Psychiatry, McGill University, Douglas Hospital Research Center, Perry Pavilion Room E-3317.1, 6875 Boulevard LaSalle, Montréal, QC H4H 1R3, Canada
Michel Bouvier
Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, Unité de Recherche en Pharmacologie Moléculaire, Université de Montréal, Pavillon Marcelle-Coutu Bureau 1306-3, Montréal, QC H3T 1J4, Canada; Corresponding author
Brigitte L. Kieffer
Department of Psychiatry, McGill University, Douglas Hospital Research Center, Perry Pavilion Room E-3317.1, 6875 Boulevard LaSalle, Montréal, QC H4H 1R3, Canada; Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch-Graffenstaden, France; Corresponding author
Summary: G protein-coupled receptors are key signaling molecules and major targets for pharmaceuticals. The concept of ligand-dependent biased signaling raises the possibility of developing drugs with improved efficacy and safety profiles, yet translating this concept to native tissues remains a major challenge. Whether drug activity profiling in recombinant cell-based assays, traditionally used for drug discovery, has any relevance to physiology is unknown. Here we focused on the mu opioid receptor, the unrivalled target for pain treatment and also the key driver for the current opioid crisis. We selected a set of clinical and novel mu agonists, and profiled their activities in transfected cell assays using advanced biosensors and in native neurons from knock-in mice expressing traceable receptors endogenously. Our data identify Gi-biased agonists, including buprenorphine, and further show highly correlated drug activities in the two otherwise very distinct experimental systems, supporting in vivo translatability of biased signaling for mu opioid drugs. : Biological Sciences; Physiology; Molecular Biology; Neuroscience; Bioengineering; Cell Biology Subject Areas: Biological Sciences, Physiology, Molecular Biology, Neuroscience, Bioengineering, Cell Biology