Remote Sensing (Aug 2024)

Geoclimatic Distribution of Satellite-Observed Salinity Bias Classified by Machine Learning Approach

  • Yating Ouyang,
  • Yuhong Zhang,
  • Ming Feng,
  • Fabio Boschetti,
  • Yan Du

DOI
https://doi.org/10.3390/rs16163084
Journal volume & issue
Vol. 16, no. 16
p. 3084

Abstract

Read online

Sea surface salinity (SSS) observed by satellite has been widely used since the successful launch of the first salinity satellite in 2009. However, compared with other oceanographic satellite products (e.g., sea surface temperature, SST) that became operational in the 1980s, the SSS product is less mature and lacks effective validation from the user end. We employed an unsupervised machine learning approach to classify the Level 3 SSS bias from the Soil Moisture Active Passive (SMAP) satellite and its observing environment. The classification model divides the samples into fifteen classes based on four variables: satellite SSS bias, SST, rain rate, and wind speed. SST is one of the most significant factors influencing the classification. In regions with cold SST, satellite SSS has an accuracy of less than 0.2 PSU (Practical Salinity Unit), mainly due to the higher uncertainty in the cold environment. A small number of observations near the seawater freezing point show a significant fresh bias caused by sea ice. A systematic bias of the SMAP SSS product is found in the mid-latitudes: positive bias tends to occur north (south) of 45°N(S) and negative bias is more common in 25°N(S)–45°N(S) bands, likely associated with the SMAP calibration scheme. A significant bias also occurs in regions with strong ocean currents and eddy activities, likely due to spatial mismatch in the highly dynamic background. Notably, satellite SSS and in situ data correlations remain good in similar environments with weaker ocean dynamic activities, implying that satellite salinity data are reliable in dynamically active regions for capturing high-resolution details. The features of the SMAP SSS shown in this work call for careful consideration by the data user community when interpreting biased values.

Keywords