INCAS Bulletin (Sep 2021)
Quadrotor Controller Design Techniques and Applications Review
Abstract
Rotor-craft style UAV, such as the quadrotor, has become increasingly popular with researchers due to its advantages over fixed-wing UAV. The quadrotor is highly maneuverable, can perform vertical take-off and landing (VTOL), and can hover flight capability. Nevertheless, handling the quadrotor complex, highly nonlinear dynamics is difficult and challenging. A suitable control system is needed to control the quadrotor system effectively. Therefore, this paper presents a review of different controller design techniques used by researchers over the past years for the quadrotor rotational and translational stabilization control. Three categories are discussed: linear controller, nonlinear controller, and intelligent controller. Based on their performance specifications, the system rise time, settling time, overshoot, and steady-state error are discussed. Finally, a comparative analysis is tabulated, summarizing the literature in the performance specifications described above.
Keywords