Nutrients (Jan 2023)

<i>Bifidobacterium pseudocatenulatum</i>-Mediated Bile Acid Metabolism to Prevent Rheumatoid Arthritis via the Gut–Joint Axis

  • Qing Zhao,
  • Huan Ren,
  • Nian Yang,
  • Xuyang Xia,
  • Qifeng Chen,
  • Dingding Zhou,
  • Zhaoqian Liu,
  • Xiaoping Chen,
  • Yao Chen,
  • Weihua Huang,
  • Honghao Zhou,
  • Heng Xu,
  • Wei Zhang

DOI
https://doi.org/10.3390/nu15020255
Journal volume & issue
Vol. 15, no. 2
p. 255

Abstract

Read online

Early intervention in rheumatoid arthritis (RA) is critical for optimal treatment, but initiation of pharmacotherapy to prevent damage remains unsatisfactory currently. Manipulation of the gut microbiome and microbial metabolites can be effective in protecting against RA. Thus, probiotics can be utilized to explore new strategies for preventing joint damage. The aim of this study was to explore the metabolites and mechanisms by which Bifidobacterium pseudocatenulatum affects RA. Based on 16S rRNA sequencing and UPLC-MS/MS assays, we focused on bile acid (BA) metabolism. In a collagen-induced arthritis (CIA) mouse model, B. pseudocatenulatum prevented joint damage by protecting the intestinal barrier and reshaped gut microbial composition, thereby elevating bile salt hydrolase (BSH) enzyme activity and increasing the levels of unconjugated secondary BAs to suppress aberrant T-helper 1/17-type immune responses; however, these benefits were eliminated by the Takeda G protein-coupled receptor 5 (TGR5) antagonist SBI-115. The results suggested that a single bacterium, B. pseudocatenulatum, can prevent RA, indicating that prophylactic administration of probiotics may be an effective therapy.

Keywords