npj Digital Medicine (Jul 2021)

Trajectories of mortality risk among patients with cancer and associated end-of-life utilization

  • Ravi B. Parikh,
  • Manqing Liu,
  • Eric Li,
  • Runze Li,
  • Jinbo Chen

DOI
https://doi.org/10.1038/s41746-021-00477-6
Journal volume & issue
Vol. 4, no. 1
pp. 1 – 5

Abstract

Read online

Abstract Machine learning algorithms may address prognostic inaccuracy among clinicians by identifying patients at risk of short-term mortality and facilitating earlier discussions about hospice enrollment, discontinuation of therapy, or other management decisions. In the present study, we used prospective predictions from a real-time machine learning prognostic algorithm to identify two trajectories of all-cause mortality risk for decedents with cancer. We show that patients with an unpredictable trajectory, where mortality risk rises only close to death, are significantly less likely to receive guideline-based end-of-life care and may not benefit from the integration of prognostic algorithms in practice.