Entropy (Apr 2024)
Side Information Design in Zero-Error Coding for Computing
Abstract
We investigate the zero-error coding for computing problems with encoder side information. An encoder provides access to a source X and is furnished with side information g(Y). It communicates with a decoder that possesses side information Y and aims to retrieve f(X,Y) with zero probability of error, where f and g are assumed to be deterministic functions. In previous work, we determined a condition that yields an analytic expression for the optimal rate R*(g); in particular, it covers the case where PX,Y is full support. In this article, we review this result and study the side information design problem, which consists of finding the best trade-offs between the quality of the encoder’s side information g(Y) and R*(g). We construct two greedy algorithms that give an achievable set of points in the side information design problem, based on partition refining and coarsening. One of them runs in polynomial time.
Keywords