Electronic Proceedings in Theoretical Computer Science (Oct 2012)
Interactive Realizability and the elimination of Skolem functions in Peano Arithmetic
Abstract
We present a new syntactical proof that first-order Peano Arithmetic with Skolem axioms is conservative over Peano Arithmetic alone for arithmetical formulas. This result – which shows that the Excluded Middle principle can be used to eliminate Skolem functions – has been previously proved by other techniques, among them the epsilon substitution method and forcing. In our proof, we employ Interactive Realizability, a computational semantics for Peano Arithmetic which extends Kreisel's modified realizability to the classical case.