Nanophotonics (May 2021)

Space- and time-resolved second harmonic spectroscopy of coupled plasmonic nanocavities

  • Salomon Adi,
  • Kollmann Heiko,
  • Mascheck Manfred,
  • Schmidt Slawa,
  • Prior Yehiam,
  • Lienau Christoph,
  • Silies Martin

DOI
https://doi.org/10.1515/nanoph-2021-0049
Journal volume & issue
Vol. 10, no. 14
pp. 3635 – 3645

Abstract

Read online

Localized surface plasmon resonances of individual sub-wavelength cavities milled in metallic films can couple to each other to form a collective behavior. This coupling leads to a delocalization of the plasmon field at the film surface and drastically alters both the linear and nonlinear optical properties of the sample. In periodic arrays of nanocavities, the coupling results in the formation of propagating surface plasmon polaritons (SPP), eigenmodes extending across the array. When artificially introducing dislocations, defects and imperfections, multiple scattering of these SPP modes can lead to hot-spot formation, intense and spatially confined fluctuations of the local plasmonic field within the array. Here, we study the underlying coupling effects by probing plasmonic modes in well-defined individual triangular dimer cavities and in arrays of triangular cavities with and without artificial defects. Nonlinear confocal spectro-microscopy is employed to map the second harmonic (SH) radiation from these systems. Pronounced spatial localization of the SPP field and significant enhancements of the SH intensity in certain, randomly distributed hot spots by more than an order of magnitude are observed from the triangular arrays as compared to a bare silver film by introducing a finite degree of disorder into the array structure. Hot-spot formation and the resulting enhancement of the nonlinear efficiency are correlated with an increase in the lifetime of the localized SPP modes. By using interferometric SH autocorrelation measurements, we reveal lifetimes of hot-spot resonances in disordered arrays that are much longer than the few-femtosecond lifetimes of the localized surface plasmon resonances of individual nanocavity dimers. This suggests that hot spot lifetime engineering provides a path for manipulating the linear and nonlinear optical properties of nanosystems by jointly exploiting coherent couplings and tailored disorder.

Keywords