Remote Sensing (Nov 2016)

Incremental and Enhanced Scanline-Based Segmentation Method for Surface Reconstruction of Sparse LiDAR Data

  • Weimin Wang,
  • Ken Sakurada,
  • Nobuo Kawaguchi

Journal volume & issue
Vol. 8, no. 11
p. 967


Read online

The segmentation of point clouds is an important aspect of automated processing tasks such as semantic extraction. However, the sparsity and non-uniformity of the point clouds gathered by the popular 3D mobile LiDAR devices pose many challenges for existing segmentation methods. To improve the segmentation results of point clouds from mobile LiDAR devices, we propose an optimized segmentation method based on Scanline Continuity Constraint (SLCC) in this work. Unlike conventional scanline-based segmentation methods, SLCC clusters scanlines using the continuity constraints in terms of the distance as well as the direction of two consecutive points. In addition, scanline clusters are agglomerated not only into primitive geometrical shapes but also irregular shapes. Another downside to existing segmentation methods is that they are not capable of incremental processing. This causes unnecessary memory and time consumption for applications that require frame-wise segmentation or when new point clouds are added. In order to address this, we propose an incremental scheme—the Incremental Recursive Segmentation (IRIS), that can be easily applied to any segmentation method. IRIS is achieved by combining the segments of newly added point clouds and the previously segmented results. Furthermore, as an example application, we construct a processing pipeline consisting of plane fitting and surface reconstruction using the segmentation results. Finally, we evaluate the proposed methods on three datasets acquired from a handheld Velodyne HDL-32E LiDAR device. The experimental results verify the efficiency of IRIS for any segmentation method and the advantages of SLCC for processing mobile LiDAR data.