Scientific Reports (Jan 2021)
A risk progression breast epithelial 3D culture model reveals Cx43/hsa_circ_0077755/miR-182 as a biomarker axis for heightened risk of breast cancer initiation
Abstract
Abstract mRNA-circRNA-miRNAs axes have been characterized in breast cancer, but not as risk-assessment axes for tumor initiation in early-onset breast cancer that is increasing drastically worldwide. To address this gap, we performed circular RNA (circRNA) microarrays and microRNA (miRNA) sequencing on acini of HMT-3522 S1 (S1) breast epithelial risk-progression culture model in 3D and chose an early-stage population miRNome for a validation cohort. Nontumorigenic S1 cells form fully polarized epithelium while pretumorigenic counterparts silenced for gap junction Cx43 (Cx43-KO-S1) lose epithelial polarity, multilayer and mimic premalignant in vivo mammary epithelial morphology. Here, 121 circRNAs and 65 miRNAs were significantly dysregulated in response to Cx43 silencing in cultured epithelia and 15 miRNAs from the patient cohort were involved in epithelial polarity disruption. Focusing on the possible sponging activity of the validated circRNAs to their target miRNAs, we found all miRNAs to be highly enriched in cancer-related pathways and cross-compared their dysregulation to actual miRNA datasets from the cultured epithelia and the patient validation cohort. We present the involvement of gap junction in post-transcriptional axes and reveal Cx43/hsa_circ_0077755/miR-182 as a potential biomarker signature axis for heightened-risk of breast cancer initiation, and that its dysregulation patterns might predict prognosis along breast cancer initiation and progression.