Brain Research Bulletin (Jan 2025)
Beneficial effects of fenoprofen on cognitive impairment induced by the kindling model of epilepsy: Interaction of oxidative stress and inflammation
Abstract
Hippocampal-dependent cognitive impairments are consequences of temporal lobe epilepsy. This study aimed to assess the modulatory effects of fenoprofen on Pentylenetetrazol (PTZ)-induced cognitive dysfunction in the rat model of epilepsy. Male Wistar rats were randomly divided into five groups. Except for the control group, the kindling model was induced by intraperitoneal (IP) injection of PTZ (35 mg/kg) every other day for a month. Three groups received fenoprofen (10, 20, and 40 mg/kg) before each PTZ injection. One week after kindling development, rats were challenged with PTZ (70 mg/kg). The Morris Water Maze, Shuttle Box, and Elevated Plus Maze tests were applied to assess cognitive functions. Rats’ serum and brain samples were prepared for biochemical, histological, and gene expression studies. Fenoprofen pretreatment effectively reduced the mean seizure score, and treated rats had better cognitive performance than the PTZ group in passive avoidance and spatial memory and learning tests; they also showed less anxiety-like behaviors. Its administration also showed anti-oxidative properties. So the serum level of Nitric oxide was significantly reduced while Glutathione and Catalase increased significantly. It also diminished the expression of inflammatory genes (Tumor Necrosis Factor alpha (TNF-α) and Nuclear Factor Kappa B (NF-kB)) in the hippocampus, these results were confirmed by histological observation from Hematoxylin & Eosin staining. These results show the ability of fenoprofen to reduce cognitive impairments caused by epilepsy induction. These effects seem to be through the modulation of inflammatory mediators and oxidative stress.