Scientific Reports (Jan 2022)
Molecular characterization of three CYP450 genes reveals their role in withanolides formation and defense in Withania somnifera, the Indian Ginseng
Abstract
Abstract The medicinal properties of Ashwagandha (Withania somnifera) are attributed to triterpenoid steroidal lactones, withanolides, which are proposed to be derived from phytosterol pathway, through the action of cytochrome P450 (CYP450) enzymes. Here, we report the characterization of three transcriptome-mined CYP450 genes (WsCYP749B1, WsCYP76 and WsCYP71B10), which exhibited induced expression in response to methyl jasmonate treatment indicating their role in secondary metabolism. All three WsCYP450s had the highest expression in leaf compared to other tissues. In planta characterization of WsCYP450s through virus induced gene silencing (VIGS) and transient overexpression approaches and subsequent metabolite analysis indicated differential modulation in the accumulation of certain withanolides in W. somnifera leaves. While WsCYP749B1-vigs significantly enhanced withaferin A (~ 450%) and reduced withanolide A (~ 50%), its overexpression drastically led to enhanced withanolide A (> 250%) and withanolide B (> 200%) levels and reduced 12-deoxywithastramonolide (~ 60%). Whereas WsCYP76-vigs led to reduced withanolide A (~ 60%) and its overexpression increased withanolide A (~ 150%) and reduced 12-deoxywithastramonolide (~ 60%). Silencing and overexpression of WsCYP71B10 resulted in significant reduction of withanolide B (~ 50%) and withanolide A (~ 60%), respectively. Further, while VIGS of WsCYP450s negatively affected the expression of pathogenesis-related (PR) genes and compromised tolerance to bacteria P. syringae DC3000, their overexpression in W. somnifera and transgenic tobacco led to improved tolerance to the bacteria. Overall, these results showed that the identified WsCYP450s have a role in one or several steps of withanolides biosynthetic pathway and are involved in conferring tolerance to biotic stress.