Applied Sciences (Nov 2021)

Investigation of the Mechanical Behavior of Polypropylene Fiber-Reinforced Red Clay

  • Jia Liu,
  • Xi’an Li,
  • Gang Li,
  • Jinli Zhang

DOI
https://doi.org/10.3390/app112210521
Journal volume & issue
Vol. 11, no. 22
p. 10521

Abstract

Read online

Red clay is not easy to use as a natural foundation because of its high water content, high plasticity index, large void ratio, and susceptibility to shrinkage and cracking. In this study, consolidated undrained triaxial tests were conducted to examine the mechanical properties of polypropylene fiber-reinforced red clay and to analyze the influence of the fiber content (FC), fiber length (FL), and cell pressure on its shear strength. By performing a regression analysis on the test data, a hyperbolic constitutive model that considers the influence of FC, FL, and cell pressure was established, and a method was developed to estimate the parameters of the model. The findings show that, in contrast with the nonreinforced red clay, the fiber-reinforced red clay had a stress-strain curve characterized by typical strain hardening, with the shear strength increasing with FC, FL and cell pressure. The calculated results of the model coincide with the test results well, confirming that the hyperbolic model could appropriately describe the stress-strain relationship of polypropylene fiber-reinforced red clay and have reference value for the design and construction of fiber-reinforced red clay foundations.

Keywords