International Journal of Molecular Sciences (Oct 2019)

Complementary Immunometabolic Effects of Exercise and PPARβ/δ Agonist in the Context of Diet-Induced Weight Loss in Obese Female Mice

  • Sébastien Le Garf,
  • Joseph Murdaca,
  • Isabelle Mothe-Satney,
  • Brigitte Sibille,
  • Gwenaëlle Le Menn,
  • Giulia Chinetti,
  • Jaap G. Neels,
  • Anne-Sophie Rousseau

DOI
https://doi.org/10.3390/ijms20205182
Journal volume & issue
Vol. 20, no. 20
p. 5182

Abstract

Read online

Regular aerobic exercise, independently of weight loss, improves metabolic and anti-inflammatory states, and can be regarded as beneficial in counteracting obesity-induced low-grade inflammation. However, it is still unknown how exercise alters immunometabolism in a context of dietary changes. Agonists of the Peroxisome Proliferator Activated-Receptor beta/delta (PPARβ/δ) have been studied this last decade as “exercise-mimetics”, which are potential therapies for metabolic diseases. In this study, we address the question of whether PPARβ/δ agonist treatment would improve the immunometabolic changes induced by exercise in diet-induced obese female mice, having switched from a high fat diet to a normal diet. 24 mice were assigned to groups according to an 8-week exercise training program and/or an 8-week treatment with 3 mg/kg/day of GW0742, a PPARβ/δ agonist. Our results show metabolic changes of peripheral lymphoid tissues with PPARβ/δ agonist (increase in fatty acid oxidation gene expression) or exercise (increase in AMPK activity) and a potentiating effect of the combination of both on the percentage of anti-inflammatory Foxp3+ T cells. Those effects are associated with a decreased visceral adipose tissue mass and skeletal muscle inflammation (TNF-α, Il-6, Il-1β mRNA level), an increase in skeletal muscle oxidative capacities (citrate synthase activity, endurance capacity), and insulin sensitivity. We conclude that a therapeutic approach targeting the PPARβ/δ pathway would improve obesity treatment.

Keywords