Shanghai Jiaotong Daxue xuebao (Nov 2021)

Intelligent Monitoring Micro-Electro-Mechanical-System Sensor of Herringbone Gate of Dateng Gorge

  • XIE Ziyi, DUAN Li, WENG Haotian

DOI
https://doi.org/10.16183/j.cnki.jsjtu.2020.102
Journal volume & issue
Vol. 55, no. 11
pp. 1401 – 1407

Abstract

Read online

Bottom pivot bearing acts as the supporting and rotating component of the important water conservancy structure. The wear in the turning and closing operation is directly related to the normal operation and reliability of the gate. To directly monitor the wear of the bearing under severe deep water working conditions, a novel thin film resistive wear sensor was designed and constructed by using the micro-electro-mechanical-system (MEMS) micro-manufacturing technology. The wear measurement and characterization experiments were conducted. Besides, a wear test was simulated by computer simulation modeling. The relationship between the measured resistance and the wear parameters under different working conditions was specifically analyzed. The results show that the production and installation process of the sensor is feasible, and the experimental results are basically consistent with the simulation results. In the allowable range of working conditions, as the resistance increases, the accuracy of wear measurement increases. The sensor is expected to be applied in the intelligent monitoring of the herringbone gate of Dateng Gorge, and realize the Internet of things (IoT) and intelligent monitoring of the water conservancy projects in the 21st century.

Keywords