Electronics (May 2023)

An Efficient Adaptive Noise Removal Filter on Range Images for LiDAR Point Clouds

  • Minh-Hai Le,
  • Ching-Hwa Cheng,
  • Don-Gey Liu

DOI
https://doi.org/10.3390/electronics12092150
Journal volume & issue
Vol. 12, no. 9
p. 2150

Abstract

Read online

Light Detection and Ranging (LiDAR) is a critical sensor for autonomous vehicle systems, providing high-resolution distance measurements in real-time. However, adverse weather conditions such as snow, rain, fog, and sun glare can affect LiDAR performance, requiring data preprocessing. This paper proposes a novel approach, the Adaptive Outlier Removal filter on range Image (AORI), which combines a projection image from LiDAR point clouds with an adaptive outlier removal filter to remove snow particles. Our research aims to analyze the characteristics of LiDAR and propose an image-based approach derived from LiDAR data that addresses the limitations of previous studies, particularly in improving the efficiency of nearest neighbor point search. Our proposed method achieves outstanding performance in both accuracy (>96%) and processing speed (0.26 s per frame) for autonomous driving systems under harsh weather from raw LiDAR point clouds in the Winter Adverse Driving dataset (WADS). Notably, AORI outperforms state-of-the-art filters by achieving a 6.6% higher F1 score and 0.7% higher accuracy. Although our method has a lower recall than state-of-the-art methods, it achieves a good balance between retaining object points and filter noise points from LiDAR, indicating its promise for snow removal in adverse weather conditions.

Keywords