PLoS ONE (Jan 2019)
Implications of monocular vision for racing drivers.
Abstract
We performed two experiments to investigate how monocular vision and a monocular generalized reduction in vision (MRV) impact driving performance during racing. A total of 75 visually normal students or professional racing drivers, were recruited for the two experiments. Driving performance was evaluated under three visual conditions: normal vision, simulated monocularity and simulated monocular reduction in vision. During the driving scenario, the drivers had to detect and react to the sudden intrusion of an opponent's racing car into their trajectory when entering a turn. Generalized Linear Mixed Models (GLMMs) and ANOVA were then used to explore how monocular vision and monocular reduction in vision affect drivers' performance (crash and reaction time) while confronting them with critical situations. The results show that drivers under monocular condition are from 2.1 (95% CI 1.11-4.11, p = .024) to 6.5 (95% CI 3.91-11.13; p = .0001) times more likely to collide with target vehicles compared with their baseline (binocular) condition, depending on the driving situation. Furthermore, there was an average increase in reaction time from 64 ms (p = .029) to 126 ms (p = .015) under monocular condition, depending on the critical driving situation configuration. This study objectively demonstrates that monocularity has a significant impact on driving performance and safety during car racing, whereas performance under monocular reduction in vision conditions is less affected.