PLoS ONE (Jan 2017)

Host species heterogeneity in the epidemiology of Nesopora caninum.

  • Karla I Moreno-Torres,
  • Laura W Pomeroy,
  • Mark Moritz,
  • William Saville,
  • Barbara Wolfe,
  • Rebecca Garabed

DOI
https://doi.org/10.1371/journal.pone.0183900
Journal volume & issue
Vol. 12, no. 8
p. e0183900

Abstract

Read online

Pathogen transmission across species drives disease emergence; however, mechanisms by which multi-host pathogens cross species boundaries are not well identified. This knowledge gap prevents integrated and targeted control in an epidemiologically continuous ecosystem. Our goal is to describe the impact of host species heterogeneity on the epidemiology of Neospora caninum circulating between livestock and wildlife in southeastern Ohio. We collected biological samples from Père David's deer (Elaphurus davidianus) located at an outdoor wildlife conservation center; from cattle raised at farms adjacent to the center; and from wild white-tailed deer that roamed across farm and center boundaries. We designed nested infectious disease models of competing hypotheses about transmission and used collected data to fit the models, thereby estimating important immunological and transmission quantities which describe the species-specific contribution to the persistence of this pathogen in the community. We applied these data and models to suggest appropriate species-specific disease control methods. Results show that immunity in cattle and Pére David's deer wanes over time, while in white-tailed deer immunity appears to be lifelong. Transmission quantities for cattle were estimated at values below the threshold for an outbreak (Rt 1). Therefore, we propose that control of contact with outside sources will be useful for disease control in cattle; boosting immunity with vaccines might be an avenue to prevent infection in cattle and Père David's deer. White-tailed deer are a potential maintenance host for infection and require further study to determine optimal control methods. Community-level investigations like this allow us to better evaluate heterogeneities in transmission processes that ultimately guide targeted control.