Diagnostics (Jan 2022)
Multi-Channel Based Image Processing Scheme for Pneumonia Identification
Abstract
Pneumonia is a prevalent severe respiratory infection that affects the distal and alveoli airways. Across the globe, it is a serious public health issue that has caused high mortality rate of children below five years old and the aged citizens who must have had previous chronic-related ailment. Pneumonia can be caused by a wide range of microorganisms, including virus, fungus, bacteria, which varies greatly across the globe. The spread of the ailment has gained computer-aided diagnosis (CAD) attention. This paper presents a multi-channel-based image processing scheme to automatically extract features and identify pneumonia from chest X-ray images. The proposed approach intends to address the problem of low quality and identify pneumonia in CXR images. Three channels of CXR images, namely, the Local Binary Pattern (LBP), Contrast Enhanced Canny Edge Detection (CECED), and Contrast Limited Adaptive Histogram Equalization (CLAHE) CXR images are processed by deep neural networks. CXR-related features of LBP images are extracted using shallow CNN, features of the CLAHE CXR images are extracted by pre-trained inception-V3, whereas the features of CECED CXR images are extracted using pre-trained MobileNet-V3. The final feature weights of the three channels are concatenated and softmax classification is utilized to determine the final identification result. The proposed network can accurately classify pneumonia according to the experimental result. The proposed method tested on publicly available dataset reports accuracy of 98.3%, sensitivity of 98.9%, and specificity of 99.2%. Compared with the single models and the state-of-the-art models, our proposed network achieves comparable performance.
Keywords