Nanomaterials (Sep 2023)

Metal-Promoted Higher-Order Assembly of Disulfide-Stapled Helical Barrels

  • Ashutosh Agrahari,
  • Mark Lipton,
  • Jean Chmielewski

DOI
https://doi.org/10.3390/nano13192645
Journal volume & issue
Vol. 13, no. 19
p. 2645

Abstract

Read online

Peptide-based helical barrels are a noteworthy building block for hierarchical assembly, with a hydrophobic cavity that can serve as a host for cargo. In this study, disulfide-stapled helical barrels were synthesized containing ligands for metal ions on the hydrophilic face of each amphiphilic peptide helix. The major product of the disulfide-stapling reaction was found to be composed of five amphiphilic peptides, thereby going from a 16-amino-acid peptide to a stapled 80-residue protein in one step. The structure of this pentamer, 5HB1, was optimized in silico, indicating a significant hydrophobic cavity of ~6 Å within a helical barrel. Metal-ion-promoted assembly of the helical barrel building blocks generated higher order assemblies with a three-dimensional (3D) matrix morphology. The matrix was decorated with hydrophobic dyes and His-tagged proteins both before and after assembly, taking advantage of the hydrophobic pocket within the helical barrels and coordination sites within the metal ion-peptide framework. As such, this peptide-based biomaterial has potential for a number of biotechnology applications, including supplying small molecule and protein growth factors during cell and tissue growth within the matrix.

Keywords