Bioengineering (Aug 2022)

Bioinformatic Analysis and In Vitro and In Vivo Experiments Reveal That Fibrillarin Participates in the Promotion of Lung Metastasis in Hepatocellular Carcinoma

  • Weixin Luo,
  • Shusheng Lin,
  • Yipei Huang,
  • Ke Zhu,
  • Fapeng Zhang,
  • Junlong Lin,
  • Yufei Qin,
  • Ziyu Zhou,
  • Wenrui Wu,
  • Chao Liu

DOI
https://doi.org/10.3390/bioengineering9080396
Journal volume & issue
Vol. 9, no. 8
p. 396

Abstract

Read online

Lung metastasis, the most frequent metastatic pattern in hepatocellular carcinoma, is an important contributor to poor prognosis. However, the mechanisms responsible for lung metastasis in hepatocellular carcinoma remain unknown. Aiming to explore these mechanisms, weighted gene coexpression network analysis (WGCNA) was firstly used to find hub genes related to lung metastasis. Then, we obtained 67 genes related to lung metastasis in hepatocellular carcinoma which were mainly related to ribosomal pathways and functions, and a protein interaction network analysis identified that fibrillarin (FBL) might be an important hub gene. Furthermore, we found that FBL is highly expressed in hepatocellular carcinoma and that its high expression increases the rate of lung metastasis and indicates a poor prognosis. Knockdown of FBL could significantly reduce proliferation and stemness as well as inhibiting the migration and invasion of hepatocellular carcinoma cells. Moreover, we found that FBL might be involved in the regulation of MYC and E2F pathways in hepatocellular carcinoma. Finally, we demonstrated that the knockdown of FBL could suppress hepatocellular carcinoma cell growth in vivo. In conclusion, ribosome-biogenesis-related proteins, especially Fibrillarin, play important roles in lung metastasis from hepatocellular carcinoma.

Keywords